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LETTER TO THE EDITOR 

Conduction in random networks of super-normal conductors: 
Geometrical interpretation and enhancement of nonlinearity 

T Ohtsuki and T Keyes 
Department of Chemistry, Boston University, Boston, MA 02215, USA 

Received 4 April 1984 

Abstract. Critical behaviour of conduction in random networks of super-normal conductors 
near the percolation threshold is investigated from a geometrical point of view. A fractal 
dimensionality d,, describing a contact area between typical size clusters is introduced 
and evaluated explicitly. Non-analytic power law behaviour (divergence) of the conduc- 
tivity and dielectric constant is given a purely geometrical interpretation in terms of dcA. 
Enhancement of nonlinearity in networks of super-nonlinear conductors is elucidated. 

Percolation is a good model of disordered mixtures such as random resistor networks 
and dilute ferromagnets. When the difference between physical quantities of different 
species is large enough, the system exhibits a non-analytic power law behaviour near 
the percolation threshold pc  of good components, namely components with a larger 
physical quantity. In a network where two kinds of conductors with conductances g A  

and g B  as g A / g B  >> 1 are randomly distributed with probabilities p and 1 - p ,  the 
conductivity U of the whole network follows (Efros and Shklovskii 1976, Straley 1976, 
1978) 

where E = ( p  -pc ) /pc<<  1 and t and s are non-integer critical exponents. Above p c ,  
good (A) conductors form an infinite percolation cluster. The fractal geometry of this 
infinite cluster yields the critical behaviour ( 1 )  and various unusual dynamics of 
percolating systems, which have extensively been studied by many authors (Alexander 
and Orbach 1982, Rammal and Toulouse 1983, Gefen et a1 1983, Harris and 
Stinchcombe 1983, Ohtsuki and Keyes 1984a, b). Recently, we have shown that most 
of the anomalies are given a unified geometrical interpretation and described generally 
by the exponent t and other static exponents for percolation (Keyes and Ohtsuki 1984). 
The geometrical concepts obtained are useful not only to derive known results but 
also to predict new phenomena (Ohtsuki and Keyes 1984~).  

Below p c ,  on the other hand, typical size clusters (TSCS) of good conductors exist 
and dominate the behaviour (2). Thus, the exponent s is also considered to represent 
the fractal nature of TSCS and associated anomalous dynamics. Recently, Coniglio 
and Stanley (1984) have presented a geometrical picture of (2). In this letter, we 
discuss in some detail and clarify a geometrical meaning of not only (2) but also (3) 
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and a power law divergence of a dielectric constant. Then enhancement of nonlinearity 
is predicted to occur from the geometrical point of view. 

First, we consider conduction in superconductor-norma1 conductor networks ( g A  = 
03, gB is non-zero and finite) and discuss the critical behaviour (2). In ordinary 
d-dimensional systems, the conductance G(L)  of a hypercube of volume U = Ld is 
in proportion to the number Ld-’ of current-carrying channels and in inverse proportion 
to the length L of channels, i.e., G ( L ) a  Ld-2 (Stauffer 1979). In the length scale larger 
than a coherence length 5, the network is also homogeneous and 

G ( L )  = (L /5 )d -2G(5) .  (4) 

Just below pc ,  TSCS of superconductors of size 5 govern the conduction and G(5)  
represents the conductance between adjacent TSCS. Neighbouring TSCS are connected 
by a slit of normal conductors. Since the resistance of TSCS is zero, G(5) is expressed 
as 

G(5) =c N ( I ) g ( I ) ,  ( 5 )  
I 

where N( I)  is the number of channels of length I connecting adjacent TSCS and g (  I )  
is the conductance of the channel. The self-similarity of the system suggests that the 
distribution of I ranges from unity to 6 and N (  I) obeys a power law N (  I )  a I-? (Stauffer 
1979). Obviously, 7 > 0 and g ( I )  is in inverse proportion to I 

g (  1 )  = I-’gB. ( 6 )  
The main contribution in the summation ( 5 )  comes from the lower bound I = 1 (Stauff er 
1979). In other words, shortest paths composed of a single normal conductor dominate 
the conduction between TSCS (Straley 1980) and G(5) is written as 

G(5) = N c g c ,  (7) 
where N c =  N (  1)  and g c =  g (  1) = g,. Inserting (7) into ( 5 )  and comparing with (2) 
and U = G( L ) /  Ld-2,  we find 

Nca t d c ~ ,  (8) 

dcA’d - 2 + S / V ,  (9) 
where v is the critical exponent for 5 defined by &ccI&I-”  (Stauffer 1979). 

The fractal dimensionality d,, is equivalent to that d, of the unscreened perimeter 
introduced by Coniglio and Stanley (1984). Here, however, we call dCA a ‘contact 
area’ dimensionality, because dCA rather describes the effective area of a contact region 
between TSCS. If TSCS are fully compact dense clusters, dCA should coincide with d - 1, 
the dimensionality of normal surfaces, but sparse ramified structure of TSCS causes 
dCA to be less than d - 1. On the other hand, TSCS have a fractal dimensionality 
dF=  d - p /  v (Kirkpatrick 1978). The interpenetration of TSCS also gives rise to a larger 
value of dCA than that of dF- 1. In addition, Nc is clearly less than &*, the number 
of all sites (bonds) belonging to a TSC. As a result, we propose inequalities 

d - 1 3  dCA, dpadCAadF-1, (10) 

1 a s / v ,  2 2 ( s + P ) / v a  1. (11) 

or equivalently, 

Table 1 shows explicit values of dCA evaluated from available data of v, p and s. The 
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Y R  B” Sb d ,  4 . 4  

1 0 1 1 0 
1.33‘ 0.14* 1.29‘ 1.9 0.97 

0.88‘ 0.7 2.5 1.8 

0.7 0.5 0.6 3.3 2.8, 
0.6 0.7 3.8 
0.5 I 0 4 4 

0.4 
-0.458 

Table 1. Contact area dimensionality dCA. 

a Stauffer (1979). 
Straley (1978). 
den Nijs (1979). 
Pearson (1980), Nienhuis ef a/ (1980). 
Hong er al (1984). 

‘ Heermann and Stauffer (1981). 
E- Margolina et a/ (1982), Gaunt and Sykes (1983) 

inequalities (10) and ( 1  1 )  are satisfied in all dimensions. At d = 6, dCA = dF and almost 
all sites in a TSC are linked to other TSCS by a single conductor. For d = 2, in contrast, 
dCA is nearly equal to d - 1 .  This reflects rather dense structure of TSCS at low 
dimensions. Except at d = 1, however, the equality s/ v = 1 is considered not to hold 
generally. Thus, a hyperscaling relation t + s  = 2v suggested by Straley (1980) fails at 
d = 2 where t = s (Straley 1977). We conclude that the non-analytic behaviour (2) and 
the non-integer exponent s stem from the fractal nature of the contact region between 

Next, we investigate the critical behaviour (3). In a network where both gA and 
gB are non-zero and finite, there exist two kinds of conduction mechanisms; one is the 
conduction along clusters of good bonds and the other is that through bad conductors. 
The conductance G( L )  becomes a sum of conductances GA and GB due to the former 
and the latter mechanism, respectively. In the length scale less than 6, L=s 6, equations 

gB. When gB/gA<< 1&1’+’, GA(L) >> G,(L) in this region. Hence, G -  GA and 
(T varies as ( 1 )  above pc ,  whereas below pc ,  the resistance GA’ of TSCS is negligible 
and (T obeys (2) as shown before. In the case 1 >> &/gA >> ) & I r + ’ ,  a characteristic length 
A where GA(A)= GB(A) is defined by 

TSCS. 

( 1 )  and (2) together with scaling arguments lead to GA( L) OC Ld-2-r’v gA and GB(L) E 
~ d - Z + s / w  

When L=s A, GA has the main contribution and 

G( A )  = GA( A )  cc A d - 2 - r / u  gA. (13) 

On the contrary, the contribution from GB is dominant at L a  A. Since the number of 
bad conductors is in proportion to the volume U = Ld, bad conductors are regarded as 
forming a normal d-dimensional lattice. In this case, therefore, we have 

G(L) = (L/h)d-2G(A). (14) 
In other words, clusters of good conductors of size A dominate the conduction in the 
whole network, instead of TSCS of size 5. Substitution of (12) and (13) into (14) gives 
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(3) .  It becomes evident that the non-analytic power law (3)  comes from the crossover 
of the dominant conduction mechanism. 

Besides (2), the exponent s describes the divergence of an electric susceptibility 
(dielectric constant) x in a resistor-capacitor network (Efros and Shklovskii 1976) 

x a IEI-SCO, (15) 

where CO is the capacitance of the capacitors. This divergence is also given a geometrical 
interpretation in terms of dCA. In the homogeneous region, L >> 6, the energy U ( L )  
accumulated in a hypercube of volume v = Ld is in proportion to the volume and 

U ( L )  = ( L / O d U ( 0 ,  (16) 

where U ( & )  is the energy accumulated in a TSC. The voltage V ( 5 )  applied between 
adjacent TSCS is given by 

V ( 0 = ( 5 / L ) V ( L ) = 5 E ,  (17) 

where E = V ( L ) / L  is an electric field. The capacitance of a channel of length 1 is 
in inverse proportion to 1. Similarly to the case of the conductance, therefore, shortest 
paths composed of a single capacitor between TSCS are considered to dominate the 
accumulation of U ( ( )  and we have 

= NCCCV2 (18) 

where C c  is the capacitance of the shortest channel and Vc is the voltage applied to 
the channel. Substituting (8), (9) and (18)-(20) into (16), we can derive (154, because 
x =  U ( L \ / c E 2 L d ) .  

The singularly large voltage difference as (20) in the channel causes enhancement 
of nonlinearity in the conduction behaviour of the system. Consider a network 
composed of superconductors ( g  = 00) and nonlinear conductors whose current ( I ) -  
voltage ( V )  characteristics are given by 

where gn is the nth order conductance. When L >> 6, the current I (  L )  flowing through 
the volume v = Ld is in proportion to the number of channels and expressed as 

I ( L )  = ( L / 5 ) d - ' z ( 5 ) .  (22) 

Again, we can expect that conduction along the shortest paths of a single nonlinear 
conductor between TSCS is dominant, because the nth order conductance of channels 
is in inverse proportion to their length to the nth power. Then I(.$) becomes 

I ( 0  = NCIC (23) 

and I ,  follows (21) 
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In this case, the relations (17) and (20) hold, too. From (17),  (20) and (22)-(24), we 
find 

I ( L ) / L d - l  = E  a,( V ( L ) / L ) "  (25) 
n 

with the nth order conductivity an 

= t n - I + s / v  g,. (26) 

With increasing n, an diverges more rapidly, that is, the enhancement of nonlinearity 
occurs near a percolation threshold. The analogy between electric and mechanical 
networks informs that elastic networks of rigid bonds-unharmonic bonds with an 
isotropic force constant show the same behaviour (de Gennes 1976, Feng and Sen 
1984). Furthermore, the enhancement of nonlinearity is considered to be observed 
widely in random mixtures of super-nonlinear constituents, e.g., central-force elastic 
networks (Feng and Sen 1984), because a singularly large excitation is generally exerted 
on nonlinear components in such systems. In linear systems, the average physical 
quantity of the whole system is a monotonically increasing function of a fraction of 
good components. In nonlinear systems, in contrast, we may expect complex behaviour 
due to enhancement of nonlinearity just below the threshold. 

We wish to thank H C Hong er a1 for showing their calculated value of the exponent 
t ( = s at d = 2) prior to publication. This work was partly supported by the NSF, 
grant number CHE 83- 12722. 
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